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Abstract

We introduce a new method for representing the dynam-
ics of human-object interactions in videos. Previous algo-
rithms tend to focus on modeling the spatial relationships
between objects and actors, but ignore the evolving nature
of this relationship through time. Our algorithm captures
the dynamic nature of human-object interactions by mod-
eling how these patterns evolve with respect to time. Our
experiments show that encoding such temporal evolution
is crucial for correctly discriminating human actions that
involve similar objects and spatial human-object relation-
ships, but only differ on the temporal aspect of the inter-
action, e.g. answer phone and dial phone We validate our
approach on two human activity datasets and show perfor-
mance improvements over competing state-of-the-art repre-
sentations.

1. Introduction
Current algorithms for human activity recognition in

videos can achieve promising classification performance in
benchmark tests [10, 13, 19]. However, it is still challeng-
ing for most algorithms to generate semantic descriptions
or achieve detailed understanding due to the broad gap be-
tween the algorithmic representation and the high-level se-
mantics. The standard baseline algorithm for action recog-
nition, which uses a visual bag-of-features representation
from spatio-temporal interest points [5, 10], can categorize
simple actions (e.g. stand-up, hand-shake) with moderate
success, but has trouble capturing semantic cues such as the
objects involved in an action or the relationships between
objects and actors. In this paper we are interested in repre-
sentations of human actions that can capture semantic cues
in order to reduce the lack of description inherent in many
traditional approaches.

A promising direction to augment the level of semantic
detail in action understanding is that of modeling human-
object interactions. Human-object interactions can be a
powerful cue that provides contextual information about

Figure 1. Objects play a valuable role to describe and categorize
human actions as they provide strong cues about which actions
are taking place. However, recognizing the objects involved in
an event may not be a sufficient cue for discrimination. In the
example above, it is not enough to recognize a phone to distin-
guish between answer phone (top row) and dial phone (bottom
row). Furthermore, modeling their overall relative spatial config-
uration does not provide discrimination power, as the object is al-
ways placed in similar configurations with respect to the actor. In
order to discriminate these actions, it is crucial to model how the
human-object relationship changes through time.

actors and objects and has been shown to be critical for
successful action recognition in still images [22]. Current
methods for modeling interactions in video, focus on cap-
turing object co-occurrence and relative spatial locations
between objects and actors [6, 18]. These cues may be
enough when each action of interest involves a different ob-
ject, e.g. dial phone and drink, or when actions that involve
the same object have distinctive relative locations between
the object and the person manipulating it, e.g. tennis fore-
hand and tennis serve. However, we are usually interested
in several actions that involve the same object and may only
be distinguished by modeling how the object interacts with
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the actor across time, e.g. dial phone and answer phone.
Unfortunately, current algorithms are unable to encode this
information.

In this paper, we address this issue by introducing a
method for encoding cues related to the spatio-temporal
interaction between objects and humans in video. Our
algorithm combines information about object and actor,
their relative locations and the evolution of the interaction
through time. By aggregating these cues, our algorithm is
able to capture subtle differences in actions that only dif-
fer in the temporal evolution of the human-object interac-
tion, such as dial phone and answer phone. Additionally,
we show our framework yields a descriptive representation
from which we can learn semantically meaningful cues that
improve action recognition performance.

The rest of the paper is organized as follows. Section 1.1
overviews some of the related work. Section 2 describes our
proposed spatio-temporal representation of human-object
interactions. Section 3 presents our human action recogni-
tion framework that leverages the proposed representation.
We present experimental validation in Section 4 and con-
clude the paper in Section 5.

1.1. Related Work

Human activity recognition is one of the most active ar-
eas of computer vision. Here, we only review some of the
most relevant aspects of the literature and refer the reader to
recent surveys [1] for broader coverage.

An important goal in activity recognition systems is to
automatically obtain detailed interpretations of the behav-
iors and events in a scene. While current algorithms are still
far from achieving this, some recent work have started to
incorporate more detailed semantic cues. One set of meth-
ods attempt this by introducing intermediate representations
can be related to semantic interpretations. These interme-
diate representations may be viewed as semantic spaces on
which we can project videos and obtain meaningful descrip-
tions. Choices of spaces with promising performances are
attributes [12], attributes and parts [23] or simple action de-
tectors in an action bank framework [20]. Unfortunately,
we usually require highly supervised training data in order
to construct these semantically meaningful representations.

Other methods adopt human-centric representations to
encode cues that are more relevant to the activities of in-
terest. Usually, these algorithms perform tracking [17, 8]
as a preprocessing step in order to localize the actor in the
scene and represent the visual and motion patterns using
local video features [8]. Alternatively, one could treat the
localization of the actor as a latent variable in a discrimina-
tive framework [9], with the price of increased representa-
tion and model complexity.

Also along this direction, and closely related to our work,
some researchers have proposed the introduction of human-

object interaction cues, which refer to the relationship be-
tween actors and objects involved in an action. These cues
were originally introduced to address the problem of action
recognition in still images, and include information about
static cues such as relative location of the object and hu-
man, relative sizes, poses, among others [23]. In the video
domain, some authors have [3, 6, 18] introduced algorithms
to capture human-object interactions for action recognition.
However, these representations still focus on spatial rela-
tionships only and lack the ability to capture the temporal
evolution of the human-object interaction through time.

In this paper, we are interested in incorporating cues re-
lated to the spatio-temporal dynamics of human-object in-
teractions in video. Therefore, our work is also related to
methods that encode temporal structures or temporal evolu-
tion of cues for activity recognition. These include methods
that model spatio-temporal relationships of visual features
such as hierarchical spatio-temporal segmentations encoded
in graph structures [2], low-level features grouped into tem-
poral [15, 16] or spatio-temporal grids [4, 10], as well as
traditional sequential models such as HMMs [7], CRFs [21]
or DBNs [11].

2. Representing Spatio-Temporal Human-
Object Interactions

In this section we introduce our representation for
human-object interactions in videos. We propose a repre-
sentation that captures cues related to the relationships be-
tween humans and objects, which we illustrate in Figure 2.
Given the locations of a human H1:T

i and an object O1:T
j

in a video sequence of length T , the goal of our represen-
tation is to encode information about how the interaction
between human and object evolves through time. As shown
by our experiments, describing the evolution of the inter-
action helps discriminating actions that: (i) involve similar
objects, so that object occurrence is not a sufficient cue for
discrimination; (ii) involve objects and humans that main-
tain similar spatial relationships, so that a global measure
of the relative locations and sizes is not a powerful cue; (iii)
may only be discriminated by analyzing the temporal aspect
of the relationship between object and actor.

To encode the temporal evolution of the interaction,
we aggregate information about the relative location, sizes
of objects and humans into a spatio-temporal grid. Intu-
itively, the choice of temporal quantization instead of ex-
plicitly modeling the interaction with a continuous dynami-
cal model provides robustness to noise and intra-class vari-
ance.

In practice, our representation aggregates the following
cues from every frame t in the sequence:
Relative location φt

l : encodes the relative spatial location
of the object Ot

j with respect to the human Ht
i in frame t.

We encode this relationship using an elliptical binning in
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Figure 2. Our descriptor encodes the dynamics of spatio-temporal human interactions in videos. The descriptor works on pairs of human
and object tracks (first column) and computes features (second and third column) related to: relative object location with respect to the
human, overlap between human and object, and their relative sizes. In order to capture how the interaction between human and object
evolves through time, our method aggregates these features into time intervals. As an example, we illustrate the case of 3 non-overlapping
intervals (fourth column), which define a spatio-temporal binning where relative location information is aggregated.

the image frame as illustrated in Figure 2. Note that we
adopt a soft-voting strategy, where the object casts votes
with weights that are inversely proportional to the distance
to the center of the bin. The soft-voting strategy allows to
deal with uncertainty in the object shape and location. The
elliptical binning takes into account the aspect ratio of the
human body and softens the bounding boxing location of
the person. As illustrated in Figure 2, in practice we use 8
angular and 2 radial partitions as well as 1 bin for objects
outside the largest radius. This yields a 17 dimensional de-
scriptor.
Relative sizes φt

r: encodes the ratio of the area in pixels be-
tween the human and object windows, i.e. φt

r = |Ot
j |/|Ht

i |.
This feature is helpful to implicitly define constraints about
the size of the object, e.g. the cup is smaller than the human
in drinking actions.
Relative overlap φt

o: this feature is computed as the in-
tersection area over union area between human and object
windows. This feature combines cues about the size and
distance of the object with respect to the human in a single
scalar.

We compute φt
l , φ

t
r and φt

o at each frame t in the time
interval t = [1, T ]. In order to encode how these features
evolve through time, we aggregate them at several time in-
tervals. In general, we define a set V of V time intervals
Iv = [tstart

v , tend
v ]. Each interval v is associated with a fea-

ture vector Φv = [Φv
l ,Φ

v
o,Φ

v
r ], by aggregating features as

follows:
Φv

l =
∑
t∈Iv

φt
l (1)

Φv
o =

[
maxt∈Iv

φt
o mint∈Iv

φt
o φt

o

]
(2)

Φv
r =

[
maxt∈Iv φ

t
r mint∈Iv φ

t
r φt

r

]
(3)

Finally, we simply concatenate the descriptors extracted
at each interval into a single vector that describes the inter-
action over the entire sequence:

Φ(Hi, Oj) =
[
Φ1,Φ2, . . . ,ΦV

]
(4)

Our representation can be used with several choices of
the set V . Natural choices are: (a) splitting a video into
non-overlapping temporal intervals of equal length (Figure
2), (b) temporal pyramid with video intervals of multiple
time scales. We study both options experimentally in our
empirical evaluation in Section 4.

Figure 3 visualizes our computed features for two exam-
ple videos of making a phone call and answering a phone
call. We note the use of multiple time intervals (top row)
yields descriptors with higher discrimination power in com-
parison to global aggregation (bottom row).

3. Action Classification
In this section, we describe how we can use our repre-

sentation for human-object interactions to perform human
activity recognition in videos. We describe the steps for
training classifiers for each action of interest from data, as
well as for recognizing actions in new sequences.

3.1. Training

The goal of the training stage is to learn a classifier for
each action of interest. Our system takes input videos that
contain examples of the action category. These videos are
annotated with: the temporal subsequence where the action
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Figure 3. Spatio-temporal human-object interactions. Given tracks of objects and humans in input videos (first column), our descriptor
computes features related to the relationship between object and actor. Competing methods aggregate these features into a single spatial
grid (second column), ignoring all the temporal information related to the interaction. Our descriptor aggregates this information into
multiple time intervals separately. In this example, our descriptor (third column) aggregates information into 3 non-overlapping intervals
of equal length that cover the entire sequence. This enables our algorithm to leverage the temporal evolution of the human object interaction,
providing a performance boost in human action recognition tasks.

occurs, and bounding boxes for the object and actor per-
forming the action in at least one frame.

As a first pre-processing stage, our system needs to track
the person and object during the temporal subsequence that
contains the action. This may be done using a combina-
tion of low-level trackers and object detectors as in [18].
The goal of this step is to provide the system with local-
izations of the object and actor at each frame, which are
required to capture the dynamics of the interaction between
human and object. In practice, we run a correlation-based
low-level tracker from the annotated bounding boxes. This
simple tracker may fail in some videos, so we manually add
a few annotations until the low-level tracker produces an
acceptable track. Note that we choose to provide relatively
good tracks to our descriptor in order to isolate the effects
of tracker failure and focus our evaluation on the discrimi-
native power of our proposed descriptor.

Given the human and object tracks produced by our sim-
ple tracker, we compute descriptors for all human-object
pairs in the training set. We use the features Φ introduced in
Section 2, which capture information about the relative lo-
cation of human-object, their sizes and temporal evolution
of these relationships.

Finally, we ensemble a training set by computing fea-
tures from positive and negative examples for each class.
In practice, our positive examples are descriptors computed
from human-object pairs associated with an action label,
while any human-object pair associated with other labels

are taken as negatives. We train a discriminative classifier
to learn the decision boundaries between action categories
in the interaction feature space. In practice, we choose a
linear SVM framework to learn these boundaries.

3.2. Recognition

At recognition time, our algorithm localizes and recog-
nizes human actions in novel sequences.

Similar to training, we run a tracking pre-processing
stage to obtain multiple human and object tracks. This pro-
cess tends to produce many tracks, and the task of our clas-
sifier consists of discriminating which human-object pairs
truly correspond to each action of interest.

The algorithm forms candidate human-object pairs by
grouping tracks that are close in space and time. For each
candidate pair, we compute the corresponding features Φ as
introduced in Section 2.

Finally, we compute confidence scores with our discrim-
inative human action classifier and declare a human-object
pair as positive if it is above certain decision threshold. In a
multi-class classification setting, we test each human-object
pair against all human action classifiers, we make a classi-
fication decision for each such pair by choosing the class
with highest confidence score.
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Figure 4. Confusion matrices on the Gupta action dataset. (a) Our
spatio-temporal human-object interaction descriptor, (b) human-
object interaction descriptor from [18].

Method Accuracy meanAP
Global HOI descriptor [18] 87.5 % 91.9 %
(a) Global Relative Location (Φl) 82.5 % 80.2 %
(b) Global Interaction (Φl, Φs, Φo) 90.1 % 83.5 %
(c) Spatio-Temporal Relative Location 88.5 % 87.3 %
(d) Spatio-Temporal Interaction 96.3 % 93.2 %

Table 1. Quantitative evaluation of different components of our de-
scriptor on the Gupta action dataset. (a) aggregates the Φl over a
single time interval that covers the entire sequence. (b) combines
(Φl, Φs, Φo) over a single time interval that covers the entire se-
quence. (c) and (d) aggregate features over 3 non-overlapping tem-
poral intervals of equal length that cover the entire sequence.

4. Experimental results
To validate our approach, we test our human action

recognition algorithm in action classification tasks using
two public datasets [6, 14].

Gupta action dataset First, we evaluate our method us-
ing the multi-class human action dataset proposed by Gupta
et al. [6]. This dataset contains 10 actors performing 6 ac-
tions that involve 4 object classes for a total of 54 videos.
The actions in this dataset are: drinking from a cup, spray-
ing from a bottle, answering a phone call, making a phone
call, pouring from a cup and lighting a flashlight. The
videos are taken in laboratory conditions, using a static
camera in a scene with green background and white objects.

We use a 4-fold cross-validation experimental setting to
evaluate our algorithm in this dataset. We train our human
action classifier using spatio-temporal interaction features
as described above. In all cases, we train binary classifiers
by using examples from other classes as negatives. During
the recognition step, all human-object pairs found in a novel
video are scored under each of the 6 action models, so that
the predicted action corresponds to the classifier with high-
est confidence score over all pairs.

In order to focus the evaluation on the power of our pro-
posed descriptor, we use the same input human and object
tracks when comparing multiple methods. We summarize

Choices for the set V Accuracy meanAP
Spatio-temporal pyramid, 3-levels 85.2 % 95.5 %
Flat, 1 global interval 92.3 % 83.5 %
Flat, 3 non-overlapping intervals 98.1 % 93.2 %

Table 2. Experimental comparisons of different choices of V

Method Accuracy meanAP
Global HOI descriptor [18] 90.7 % 93.9 %
Global Relative Location 82.0 % 92.7 %
Global Interaction 92.7 % 89.5 %
Spatio-Temporal Relative Location 92.7 % 90.1 %
Spatio-Temporal Interaction 98.0 % 94.2 %

Table 3. Quantitative evaluation of different components of our
descriptor on the Rochester Daily Activity dataset. See Table 1 for
more details.

the results of our quantitative evaluation in the confusion
matrix of Figure 4(a), whose diagonal averages to 96.3%.
We also compare our system to our implementation of the
state-of-the-art human-object interaction descriptor of Prest
et al. [18], which computes interactions and relationships
over a single temporal interval and does not capture the tem-
poral evolution of the interaction. The associated confusion
matrix is presented in Figure 4(b), whose diagonal averages
to 87.5%. We note that our descriptor provides better dis-
crimination, especially since the actions of interest involve
similar objects and spatial relationships that can only be dis-
criminated using the temporal aspect of the interaction.

Furthermore, we evaluate the contribution of each com-
ponent of our descriptor to the final recognition perfor-
mance. Table 1 summarizes our quantitative comparisons
for each component under two measures: Accuracy, which
corresponds to the average of the confusion matrix diago-
nal in multi-class setting; and meanAP, which corresponds
to the mean Average Precision for each binary classifier. We
note that each feature component is complementary, and we
can achieve the best performance by combining our relative
location, sizes, overlap and spatio-temporal binning.

Table 1 also compares our descriptor against a baseline
that accumulates interaction cues in a temporally global
manner. This is similar to the descriptor proposed in [18].
Here, we report figures obtained with our own implementa-
tion of [18], which uses the input human-object tracks ob-
tained as described above. This enables a fair comparison
against our proposed descriptor.

We also study the effect of using different choices of the
set V , which we summarize in Table 2. We note that using
a spatio-temporal pyramid affects performance in terms of
accuracy, which we attribute to overfitting due to the higher
dimensionality of the descriptor and the small training set.
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Figure 5. Confusion matrices for the Rochester Daily Activity
dataset. (a) Our spatio-temporal human-object interaction descrip-
tor, (b) human-object interaction descriptor from [18].

Rochester Daily Action dataset In a second experiment,
we evaluate our algorithm using the Rochester Daily Ac-
tion dataset [14]. This dataset contains 5 actors performing
10 actions that involve 8 object classes for a total of 150
videos. In comparison to the Gupta dataset, this is a more
challenging dataset with videos recorded in a real kitchen
scenario and real objects.

We summarize the recognition performance of our algo-
rithm with the confusion matrix in Figure 5(a). We also
compare it to our implementation of the state-of-the-art de-
scriptor from [18], whose confusion matrix is in Figure
5(b). Similarly to our previous experiment, we note that our
descriptor has a higher discrimination power in comparison
to the best interaction descriptor reported in the literature
[18]. We also provide comparisons to our baselines in Ta-
ble 3.

Finally, Figure 6 shows examples of successful action
recognition as well as classification errors made by our sys-
tem. We note most errors are due to strong similarities of
spatio-temporal relationships between human and objects.
We intend to address this issue in the future with a more
structured description of human-object interactions that al-
low the occurrence of multiple objects.

5. Conclusions and Future Work

This paper presents a new descriptor for human object
interactions that captures the dynamics and temporal evolu-
tion of the relationship between object and human. Our ex-
perimental evaluation shows that this descriptor can provide
better discrimination power for the task of human action
classification in comparison to state-of-the-art algorithms.
We plan to study the inclusion other contextual cues, such
as location, pose and motion of multiple surrounding ob-
jects and actors.
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